Topology Aware Internet Traffic Forecasting Using Neural Networks
نویسندگان
چکیده
Forecasting Internet traffic is receiving an increasing attention from the computer networks domain. Indeed, by improving this task efficient traffic engineering and anomaly detection tools can be developed, leading to economic gains due to better resource management. This paper presents a Neural Network (NN) approach to predict TCP/IP traffic for all links of a backbone network, using both univariate and multivariate strategies. The former uses only past values of the forecasted link, while the latter is based on the neighbor links of the backbone topology. Several experiments were held by considering real-world data from the UK education and research network. Also, different time scales (e.g. every ten minutes and hourly) were analyzed. Overall, the proposed NN approach outperformed other forecasting methods (e.g. Holt-Winters).
منابع مشابه
Internet Traffic Forecasting using Neural Networks [IJCNN1337]
The forecast of Internet traffic is an important issue that has received few attention from the computer networks field. By improving this task, efficient traffic engineering and anomaly detection tools can be created, resulting in economic gains from better resource management. This paper presents a Neural Network Ensemble (NNE) for the prediction of TCP/IP traffic using a Time Series Forecast...
متن کاملModelling the Multi-Layer Artificial Neural Network for Internet Traffic Forecasting: The Model Selection Design Issues
Internet traffic forecasting models with learning ability, such as the artificial neural network (ANN), have been growing in popularity in recent time due to their impressive performance in modelling the high degree of variability and nonlinearity of internet traffic. This study examined the impacts of some design issues on performance of the multi-layer artificial neural network for internet t...
متن کاملHigh-Order Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
Traffic forecasting is a challenging task, due to the complicated spatial dependencies on roadway networks and the time-varying traffic patterns. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, High-Order Graph Convolutional Long Short-Term Memory Neural Network (HGC-LSTM), to learn the interactions between links in the traffic net...
متن کاملCommunication-Aware Traffic Stream Optimization for Virtual Machine Placement in Cloud Datacenters with VL2 Topology
By pervasiveness of cloud computing, a colossal amount of applications from gigantic organizations increasingly tend to rely on cloud services. These demands caused a great number of applications in form of couple of virtual machines (VMs) requests to be executed on data centers’ servers. Some of applications are as big as not possible to be processed upon a single VM. Also, there exists severa...
متن کاملMASTER THESIS Energy Efficiency in IP over WDM Networks
In the last decade, energy efficiency in backbone networks has become an important problem due to the significant growth in the Internet traffic. A very promising solution to solve this problem in Internet Protocol (IP) over Wavelength Division Multiplexing (WDM) networks is the Virtual Topology Adaptation approach, which permits adapting network resources by following a dynamic daily traffic p...
متن کامل